Lichen

Annotated common.py

342:d9053172e0ff
2016-12-07 Paul Boddie Implemented the join method for strings.
paul@0 1
#!/usr/bin/env python
paul@0 2
paul@0 3
"""
paul@0 4
Common functions.
paul@0 5
paul@0 6
Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012, 2013,
paul@0 7
              2014, 2015, 2016 Paul Boddie <paul@boddie.org.uk>
paul@0 8
paul@0 9
This program is free software; you can redistribute it and/or modify it under
paul@0 10
the terms of the GNU General Public License as published by the Free Software
paul@0 11
Foundation; either version 3 of the License, or (at your option) any later
paul@0 12
version.
paul@0 13
paul@0 14
This program is distributed in the hope that it will be useful, but WITHOUT
paul@0 15
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
paul@0 16
FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
paul@0 17
details.
paul@0 18
paul@0 19
You should have received a copy of the GNU General Public License along with
paul@0 20
this program.  If not, see <http://www.gnu.org/licenses/>.
paul@0 21
"""
paul@0 22
paul@0 23
from errors import *
paul@0 24
from os import listdir, makedirs, remove
paul@0 25
from os.path import exists, isdir, join, split
paul@11 26
from results import ConstantValueRef, LiteralSequenceRef, NameRef
paul@0 27
import compiler
paul@0 28
paul@0 29
class CommonOutput:
paul@0 30
paul@0 31
    "Common output functionality."
paul@0 32
paul@0 33
    def check_output(self):
paul@0 34
paul@0 35
        "Check the existing output and remove it if irrelevant."
paul@0 36
paul@0 37
        if not exists(self.output):
paul@0 38
            makedirs(self.output)
paul@0 39
paul@0 40
        details = self.importer.get_cache_details()
paul@0 41
        recorded_details = self.get_output_details()
paul@0 42
paul@0 43
        if recorded_details != details:
paul@0 44
            self.remove_output()
paul@0 45
paul@0 46
        writefile(self.get_output_details_filename(), details)
paul@0 47
paul@0 48
    def get_output_details_filename(self):
paul@0 49
paul@0 50
        "Return the output details filename."
paul@0 51
paul@0 52
        return join(self.output, "$details")
paul@0 53
paul@0 54
    def get_output_details(self):
paul@0 55
paul@0 56
        "Return details of the existing output."
paul@0 57
paul@0 58
        details_filename = self.get_output_details_filename()
paul@0 59
paul@0 60
        if not exists(details_filename):
paul@0 61
            return None
paul@0 62
        else:
paul@0 63
            return readfile(details_filename)
paul@0 64
paul@0 65
    def remove_output(self, dirname=None):
paul@0 66
paul@0 67
        "Remove the output."
paul@0 68
paul@0 69
        dirname = dirname or self.output
paul@0 70
paul@0 71
        for filename in listdir(dirname):
paul@0 72
            path = join(dirname, filename)
paul@0 73
            if isdir(path):
paul@0 74
                self.remove_output(path)
paul@0 75
            else:
paul@0 76
                remove(path)
paul@0 77
paul@0 78
class CommonModule:
paul@0 79
paul@0 80
    "A common module representation."
paul@0 81
paul@0 82
    def __init__(self, name, importer):
paul@0 83
paul@0 84
        """
paul@0 85
        Initialise this module with the given 'name' and an 'importer' which is
paul@0 86
        used to provide access to other modules when required.
paul@0 87
        """
paul@0 88
paul@0 89
        self.name = name
paul@0 90
        self.importer = importer
paul@0 91
        self.filename = None
paul@0 92
paul@0 93
        # Inspection-related attributes.
paul@0 94
paul@0 95
        self.astnode = None
paul@0 96
        self.iterators = {}
paul@0 97
        self.temp = {}
paul@0 98
        self.lambdas = {}
paul@0 99
paul@0 100
        # Constants, literals and values.
paul@0 101
paul@0 102
        self.constants = {}
paul@0 103
        self.constant_values = {}
paul@0 104
        self.literals = {}
paul@0 105
        self.literal_types = {}
paul@0 106
paul@0 107
        # Nested namespaces.
paul@0 108
paul@0 109
        self.namespace_path = []
paul@0 110
        self.in_function = False
paul@0 111
paul@124 112
        # Retain the assignment value expression and track invocations.
paul@124 113
paul@124 114
        self.in_assignment = None
paul@124 115
        self.in_invocation = False
paul@124 116
paul@124 117
        # Attribute chain state management.
paul@0 118
paul@0 119
        self.attrs = []
paul@124 120
        self.chain_assignment = []
paul@124 121
        self.chain_invocation = []
paul@0 122
paul@0 123
    def __repr__(self):
paul@0 124
        return "CommonModule(%r, %r)" % (self.name, self.importer)
paul@0 125
paul@0 126
    def parse_file(self, filename):
paul@0 127
paul@0 128
        "Parse the file with the given 'filename', initialising attributes."
paul@0 129
paul@0 130
        self.filename = filename
paul@0 131
        self.astnode = compiler.parseFile(filename)
paul@0 132
paul@0 133
    # Module-relative naming.
paul@0 134
paul@0 135
    def get_global_path(self, name):
paul@0 136
        return "%s.%s" % (self.name, name)
paul@0 137
paul@0 138
    def get_namespace_path(self):
paul@0 139
        return ".".join([self.name] + self.namespace_path)
paul@0 140
paul@0 141
    def get_object_path(self, name):
paul@0 142
        return ".".join([self.name] + self.namespace_path + [name])
paul@0 143
paul@0 144
    def get_parent_path(self):
paul@0 145
        return ".".join([self.name] + self.namespace_path[:-1])
paul@0 146
paul@0 147
    # Namespace management.
paul@0 148
paul@0 149
    def enter_namespace(self, name):
paul@0 150
paul@0 151
        "Enter the namespace having the given 'name'."
paul@0 152
paul@0 153
        self.namespace_path.append(name)
paul@0 154
paul@0 155
    def exit_namespace(self):
paul@0 156
paul@0 157
        "Exit the current namespace."
paul@0 158
paul@0 159
        self.namespace_path.pop()
paul@0 160
paul@0 161
    # Constant reference naming.
paul@0 162
paul@0 163
    def get_constant_name(self, value):
paul@0 164
paul@0 165
        "Add a new constant to the current namespace for 'value'."
paul@0 166
paul@0 167
        path = self.get_namespace_path()
paul@0 168
        init_item(self.constants, path, dict)
paul@0 169
        return "$c%d" % add_counter_item(self.constants[path], value)
paul@0 170
paul@0 171
    # Literal reference naming.
paul@0 172
paul@0 173
    def get_literal_name(self):
paul@0 174
paul@0 175
        "Add a new literal to the current namespace."
paul@0 176
paul@0 177
        path = self.get_namespace_path()
paul@0 178
        init_item(self.literals, path, lambda: 0)
paul@0 179
        return "$C%d" % self.literals[path]
paul@0 180
paul@0 181
    def next_literal(self):
paul@0 182
        self.literals[self.get_namespace_path()] += 1
paul@0 183
paul@0 184
    # Temporary iterator naming.
paul@0 185
paul@0 186
    def get_iterator_path(self):
paul@0 187
        return self.in_function and self.get_namespace_path() or self.name
paul@0 188
paul@0 189
    def get_iterator_name(self):
paul@0 190
        path = self.get_iterator_path()
paul@0 191
        init_item(self.iterators, path, lambda: 0)
paul@0 192
        return "$i%d" % self.iterators[path]
paul@0 193
paul@0 194
    def next_iterator(self):
paul@0 195
        self.iterators[self.get_iterator_path()] += 1
paul@0 196
paul@0 197
    # Temporary variable naming.
paul@0 198
paul@0 199
    def get_temporary_name(self):
paul@0 200
        path = self.get_namespace_path()
paul@0 201
        init_item(self.temp, path, lambda: 0)
paul@0 202
        return "$t%d" % self.temp[path]
paul@0 203
paul@0 204
    def next_temporary(self):
paul@0 205
        self.temp[self.get_namespace_path()] += 1
paul@0 206
paul@0 207
    # Arbitrary function naming.
paul@0 208
paul@0 209
    def get_lambda_name(self):
paul@0 210
        path = self.get_namespace_path()
paul@0 211
        init_item(self.lambdas, path, lambda: 0)
paul@0 212
        name = "$l%d" % self.lambdas[path]
paul@0 213
        self.lambdas[path] += 1
paul@0 214
        return name
paul@0 215
paul@0 216
    def reset_lambdas(self):
paul@0 217
        self.lambdas = {}
paul@0 218
paul@0 219
    # Constant and literal recording.
paul@0 220
paul@0 221
    def get_constant_reference(self, ref, value):
paul@0 222
paul@0 223
        "Return a constant reference for the given 'ref' type and 'value'."
paul@0 224
paul@0 225
        constant_name = self.get_constant_name(value)
paul@0 226
paul@0 227
        # Return a reference for the constant.
paul@0 228
paul@0 229
        objpath = self.get_object_path(constant_name)
paul@338 230
        name_ref = ConstantValueRef(constant_name, ref.instance_of(objpath), value)
paul@0 231
paul@0 232
        # Record the value and type for the constant.
paul@0 233
paul@251 234
        self._reserve_constant(objpath, name_ref.value, name_ref.get_origin())
paul@0 235
        return name_ref
paul@0 236
paul@251 237
    def reserve_constant(self, objpath, value, origin):
paul@251 238
paul@251 239
        """
paul@251 240
        Reserve a constant within 'objpath' with the given 'value' and having a
paul@251 241
        type with the given 'origin'.
paul@251 242
        """
paul@251 243
paul@251 244
        constant_name = self.get_constant_name(value)
paul@251 245
        objpath = self.get_object_path(constant_name)
paul@251 246
        self._reserve_constant(objpath, value, origin)
paul@251 247
paul@251 248
    def _reserve_constant(self, objpath, value, origin):
paul@251 249
paul@251 250
        "Store a constant for 'objpath' with the given 'value' and 'origin'."
paul@251 251
paul@251 252
        self.constant_values[objpath] = value, origin
paul@251 253
paul@0 254
    def get_literal_reference(self, name, ref, items, cls):
paul@0 255
paul@11 256
        """
paul@11 257
        Return a literal reference for the given type 'name', literal 'ref',
paul@11 258
        node 'items' and employing the given 'cls' as the class of the returned
paul@11 259
        reference object.
paul@11 260
        """
paul@11 261
paul@0 262
        # Construct an invocation using the items as arguments.
paul@0 263
paul@0 264
        typename = "$L%s" % name
paul@0 265
paul@0 266
        invocation = compiler.ast.CallFunc(
paul@0 267
            compiler.ast.Name(typename),
paul@0 268
            items
paul@0 269
            )
paul@0 270
paul@0 271
        # Get a name for the actual literal.
paul@0 272
paul@0 273
        instname = self.get_literal_name()
paul@0 274
        self.next_literal()
paul@0 275
paul@0 276
        # Record the type for the literal.
paul@0 277
paul@0 278
        objpath = self.get_object_path(instname)
paul@0 279
        self.literal_types[objpath] = ref.get_origin()
paul@0 280
paul@0 281
        # Return a wrapper for the invocation exposing the items.
paul@0 282
paul@0 283
        return cls(
paul@0 284
            instname,
paul@0 285
            ref.instance_of(),
paul@0 286
            self.process_structure_node(invocation),
paul@0 287
            invocation.args
paul@0 288
            )
paul@0 289
paul@0 290
    # Node handling.
paul@0 291
paul@0 292
    def process_structure(self, node):
paul@0 293
paul@0 294
        """
paul@0 295
        Within the given 'node', process the program structure.
paul@0 296
paul@0 297
        During inspection, this will process global declarations, adjusting the
paul@0 298
        module namespace, and import statements, building a module dependency
paul@0 299
        hierarchy.
paul@0 300
paul@0 301
        During translation, this will consult deduced program information and
paul@0 302
        output translated code.
paul@0 303
        """
paul@0 304
paul@0 305
        l = []
paul@0 306
        for n in node.getChildNodes():
paul@0 307
            l.append(self.process_structure_node(n))
paul@0 308
        return l
paul@0 309
paul@0 310
    def process_augassign_node(self, n):
paul@0 311
paul@0 312
        "Process the given augmented assignment node 'n'."
paul@0 313
paul@0 314
        op = operator_functions[n.op]
paul@0 315
paul@0 316
        if isinstance(n.node, compiler.ast.Getattr):
paul@0 317
            target = compiler.ast.AssAttr(n.node.expr, n.node.attrname, "OP_ASSIGN")
paul@0 318
        elif isinstance(n.node, compiler.ast.Name):
paul@0 319
            target = compiler.ast.AssName(n.node.name, "OP_ASSIGN")
paul@0 320
        else:
paul@0 321
            target = n.node
paul@0 322
paul@0 323
        assignment = compiler.ast.Assign(
paul@0 324
            [target],
paul@0 325
            compiler.ast.CallFunc(
paul@0 326
                compiler.ast.Name("$op%s" % op),
paul@0 327
                [n.node, n.expr]))
paul@0 328
paul@0 329
        return self.process_structure_node(assignment)
paul@0 330
paul@320 331
    def process_assignment_for_object(self, original_name, source):
paul@0 332
paul@0 333
        """
paul@0 334
        Return an assignment operation making 'original_name' refer to the given
paul@196 335
        'source'.
paul@0 336
        """
paul@0 337
paul@0 338
        assignment = compiler.ast.Assign(
paul@0 339
            [compiler.ast.AssName(original_name, "OP_ASSIGN")],
paul@196 340
            source
paul@0 341
            )
paul@0 342
paul@0 343
        return self.process_structure_node(assignment)
paul@0 344
paul@0 345
    def process_assignment_node_items(self, n, expr):
paul@0 346
paul@0 347
        """
paul@0 348
        Process the given assignment node 'n' whose children are to be assigned
paul@0 349
        items of 'expr'.
paul@0 350
        """
paul@0 351
paul@0 352
        name_ref = self.process_structure_node(expr)
paul@0 353
paul@0 354
        # Either unpack the items and present them directly to each assignment
paul@0 355
        # node.
paul@0 356
paul@0 357
        if isinstance(name_ref, LiteralSequenceRef):
paul@0 358
            self.process_literal_sequence_items(n, name_ref)
paul@0 359
paul@0 360
        # Or have the assignment nodes access each item via the sequence API.
paul@0 361
paul@0 362
        else:
paul@0 363
            self.process_assignment_node_items_by_position(n, expr, name_ref)
paul@0 364
paul@0 365
    def process_assignment_node_items_by_position(self, n, expr, name_ref):
paul@0 366
paul@0 367
        """
paul@0 368
        Process the given sequence assignment node 'n', converting the node to
paul@0 369
        the separate assignment of each target using positional access on a
paul@0 370
        temporary variable representing the sequence. Use 'expr' as the assigned
paul@0 371
        value and 'name_ref' as the reference providing any existing temporary
paul@0 372
        variable.
paul@0 373
        """
paul@0 374
paul@0 375
        assignments = []
paul@0 376
paul@0 377
        if isinstance(name_ref, NameRef):
paul@0 378
            temp = name_ref.name
paul@0 379
        else:
paul@0 380
            temp = self.get_temporary_name()
paul@0 381
            self.next_temporary()
paul@0 382
paul@0 383
            assignments.append(
paul@0 384
                compiler.ast.Assign([compiler.ast.AssName(temp, "OP_ASSIGN")], expr)
paul@0 385
                )
paul@0 386
paul@0 387
        for i, node in enumerate(n.nodes):
paul@0 388
            assignments.append(
paul@0 389
                compiler.ast.Assign([node], compiler.ast.Subscript(
paul@0 390
                    compiler.ast.Name(temp), "OP_APPLY", [compiler.ast.Const(i)]))
paul@0 391
                )
paul@0 392
paul@0 393
        return self.process_structure_node(compiler.ast.Stmt(assignments))
paul@0 394
paul@0 395
    def process_literal_sequence_items(self, n, name_ref):
paul@0 396
paul@0 397
        """
paul@0 398
        Process the given assignment node 'n', obtaining from the given
paul@0 399
        'name_ref' the items to be assigned to the assignment targets.
paul@0 400
        """
paul@0 401
paul@0 402
        if len(n.nodes) == len(name_ref.items):
paul@0 403
            for node, item in zip(n.nodes, name_ref.items):
paul@0 404
                self.process_assignment_node(node, item)
paul@0 405
        else:
paul@0 406
            raise InspectError("In %s, item assignment needing %d items is given %d items." % (
paul@0 407
                self.get_namespace_path(), len(n.nodes), len(name_ref.items)))
paul@0 408
paul@0 409
    def process_compare_node(self, n):
paul@0 410
paul@0 411
        """
paul@0 412
        Process the given comparison node 'n', converting an operator sequence
paul@0 413
        from...
paul@0 414
paul@0 415
        <expr1> <op1> <expr2> <op2> <expr3>
paul@0 416
paul@0 417
        ...to...
paul@0 418
paul@0 419
        <op1>(<expr1>, <expr2>) and <op2>(<expr2>, <expr3>)
paul@0 420
        """
paul@0 421
paul@0 422
        invocations = []
paul@0 423
        last = n.expr
paul@0 424
paul@0 425
        for op, op_node in n.ops:
paul@0 426
            op = operator_functions.get(op)
paul@0 427
paul@0 428
            invocations.append(compiler.ast.CallFunc(
paul@0 429
                compiler.ast.Name("$op%s" % op),
paul@0 430
                [last, op_node]))
paul@0 431
paul@0 432
            last = op_node
paul@0 433
paul@0 434
        if len(invocations) > 1:
paul@0 435
            result = compiler.ast.And(invocations)
paul@0 436
        else:
paul@0 437
            result = invocations[0]
paul@0 438
paul@0 439
        return self.process_structure_node(result)
paul@0 440
paul@0 441
    def process_dict_node(self, node):
paul@0 442
paul@0 443
        """
paul@0 444
        Process the given dictionary 'node', returning a list of (key, value)
paul@0 445
        tuples.
paul@0 446
        """
paul@0 447
paul@0 448
        l = []
paul@0 449
        for key, value in node.items:
paul@0 450
            l.append((
paul@0 451
                self.process_structure_node(key),
paul@0 452
                self.process_structure_node(value)))
paul@0 453
        return l
paul@0 454
paul@0 455
    def process_for_node(self, n):
paul@0 456
paul@0 457
        """
paul@0 458
        Generate attribute accesses for {n.list}.__iter__ and the next method on
paul@0 459
        the iterator, producing a replacement node for the original.
paul@0 460
        """
paul@0 461
paul@0 462
        node = compiler.ast.Stmt([
paul@0 463
paul@0 464
            # <iterator> = {n.list}.__iter__
paul@0 465
paul@0 466
            compiler.ast.Assign(
paul@0 467
                [compiler.ast.AssName(self.get_iterator_name(), "OP_ASSIGN")],
paul@0 468
                compiler.ast.CallFunc(
paul@0 469
                    compiler.ast.Getattr(n.list, "__iter__"),
paul@0 470
                    []
paul@0 471
                    )),
paul@0 472
paul@0 473
            # try:
paul@0 474
            #     while True:
paul@0 475
            #         <var>... = <iterator>.next()
paul@0 476
            #         ...
paul@0 477
            # except StopIteration:
paul@0 478
            #     pass
paul@0 479
paul@0 480
            compiler.ast.TryExcept(
paul@0 481
                compiler.ast.While(
paul@0 482
                    compiler.ast.Name("True"),
paul@0 483
                    compiler.ast.Stmt([
paul@0 484
                        compiler.ast.Assign(
paul@0 485
                            [n.assign],
paul@0 486
                            compiler.ast.CallFunc(
paul@0 487
                                compiler.ast.Getattr(compiler.ast.Name(self.get_iterator_name()), "next"),
paul@0 488
                                []
paul@0 489
                                )),
paul@0 490
                        n.body]),
paul@0 491
                    None),
paul@0 492
                [(compiler.ast.Name("StopIteration"), None, compiler.ast.Stmt([compiler.ast.Pass()]))],
paul@0 493
                None)
paul@0 494
            ])
paul@0 495
paul@0 496
        self.next_iterator()
paul@0 497
        self.process_structure_node(node)
paul@0 498
paul@0 499
    def process_literal_sequence_node(self, n, name, ref, cls):
paul@0 500
paul@0 501
        """
paul@0 502
        Process the given literal sequence node 'n' as a function invocation,
paul@0 503
        with 'name' indicating the type of the sequence, and 'ref' being a
paul@0 504
        reference to the type. The 'cls' is used to instantiate a suitable name
paul@0 505
        reference.
paul@0 506
        """
paul@0 507
paul@0 508
        if name == "dict":
paul@0 509
            items = []
paul@0 510
            for key, value in n.items:
paul@0 511
                items.append(compiler.ast.Tuple([key, value]))
paul@0 512
        else: # name in ("list", "tuple"):
paul@0 513
            items = n.nodes
paul@0 514
paul@0 515
        return self.get_literal_reference(name, ref, items, cls)
paul@0 516
paul@0 517
    def process_operator_node(self, n):
paul@0 518
paul@0 519
        """
paul@0 520
        Process the given operator node 'n' as an operator function invocation.
paul@0 521
        """
paul@0 522
paul@0 523
        op = operator_functions[n.__class__.__name__]
paul@0 524
        invocation = compiler.ast.CallFunc(
paul@0 525
            compiler.ast.Name("$op%s" % op),
paul@0 526
            list(n.getChildNodes())
paul@0 527
            )
paul@0 528
        return self.process_structure_node(invocation)
paul@0 529
paul@173 530
    def process_print_node(self, n):
paul@173 531
paul@173 532
        """
paul@173 533
        Process the given print node 'n' as an invocation on a stream of the
paul@173 534
        form...
paul@173 535
paul@173 536
        $print(dest, args, nl)
paul@173 537
paul@173 538
        The special function name will be translated elsewhere.
paul@173 539
        """
paul@173 540
paul@173 541
        nl = isinstance(n, compiler.ast.Printnl)
paul@173 542
        invocation = compiler.ast.CallFunc(
paul@173 543
            compiler.ast.Name("$print"),
paul@173 544
            [n.dest or compiler.ast.Name("None"),
paul@173 545
             compiler.ast.List(list(n.nodes)),
paul@173 546
             nl and compiler.ast.Name("True") or compiler.ast.Name("false")]
paul@173 547
            )
paul@173 548
        return self.process_structure_node(invocation)
paul@173 549
paul@0 550
    def process_slice_node(self, n, expr=None):
paul@0 551
paul@0 552
        """
paul@0 553
        Process the given slice node 'n' as an operator function invocation.
paul@0 554
        """
paul@0 555
paul@0 556
        op = n.flags == "OP_ASSIGN" and "setslice" or "getslice"
paul@0 557
        invocation = compiler.ast.CallFunc(
paul@0 558
            compiler.ast.Name("$op%s" % op),
paul@0 559
            [n.expr, n.lower or compiler.ast.Name("None"), n.upper or compiler.ast.Name("None")] +
paul@0 560
                (expr and [expr] or [])
paul@0 561
            )
paul@0 562
        return self.process_structure_node(invocation)
paul@0 563
paul@0 564
    def process_sliceobj_node(self, n):
paul@0 565
paul@0 566
        """
paul@0 567
        Process the given slice object node 'n' as a slice constructor.
paul@0 568
        """
paul@0 569
paul@0 570
        op = "slice"
paul@0 571
        invocation = compiler.ast.CallFunc(
paul@0 572
            compiler.ast.Name("$op%s" % op),
paul@0 573
            n.nodes
paul@0 574
            )
paul@0 575
        return self.process_structure_node(invocation)
paul@0 576
paul@0 577
    def process_subscript_node(self, n, expr=None):
paul@0 578
paul@0 579
        """
paul@0 580
        Process the given subscript node 'n' as an operator function invocation.
paul@0 581
        """
paul@0 582
paul@0 583
        op = n.flags == "OP_ASSIGN" and "setitem" or "getitem"
paul@0 584
        invocation = compiler.ast.CallFunc(
paul@0 585
            compiler.ast.Name("$op%s" % op),
paul@0 586
            [n.expr] + list(n.subs) + (expr and [expr] or [])
paul@0 587
            )
paul@0 588
        return self.process_structure_node(invocation)
paul@0 589
paul@0 590
    def process_attribute_chain(self, n):
paul@0 591
paul@0 592
        """
paul@0 593
        Process the given attribute access node 'n'. Return a reference
paul@0 594
        describing the expression.
paul@0 595
        """
paul@0 596
paul@0 597
        # AssAttr/Getattr are nested with the outermost access being the last
paul@0 598
        # access in any chain.
paul@0 599
paul@0 600
        self.attrs.insert(0, n.attrname)
paul@0 601
        attrs = self.attrs
paul@0 602
paul@0 603
        # Break attribute chains where non-access nodes are found.
paul@0 604
paul@0 605
        if not self.have_access_expression(n):
paul@110 606
            self.reset_attribute_chain()
paul@0 607
paul@0 608
        # Descend into the expression, extending backwards any existing chain,
paul@0 609
        # or building another for the expression.
paul@0 610
paul@0 611
        name_ref = self.process_structure_node(n.expr)
paul@0 612
paul@0 613
        # Restore chain information applying to this node.
paul@0 614
paul@110 615
        if not self.have_access_expression(n):
paul@110 616
            self.restore_attribute_chain(attrs)
paul@0 617
paul@0 618
        # Return immediately if the expression was another access and thus a
paul@0 619
        # continuation backwards along the chain. The above processing will
paul@0 620
        # have followed the chain all the way to its conclusion.
paul@0 621
paul@0 622
        if self.have_access_expression(n):
paul@0 623
            del self.attrs[0]
paul@0 624
paul@0 625
        return name_ref
paul@0 626
paul@124 627
    # Attribute chain handling.
paul@124 628
paul@110 629
    def reset_attribute_chain(self):
paul@110 630
paul@110 631
        "Reset the attribute chain for a subexpression of an attribute access."
paul@110 632
paul@110 633
        self.attrs = []
paul@124 634
        self.chain_assignment.append(self.in_assignment)
paul@124 635
        self.chain_invocation.append(self.in_invocation)
paul@124 636
        self.in_assignment = None
paul@124 637
        self.in_invocation = False
paul@110 638
paul@110 639
    def restore_attribute_chain(self, attrs):
paul@110 640
paul@110 641
        "Restore the attribute chain for an attribute access."
paul@110 642
paul@110 643
        self.attrs = attrs
paul@124 644
        self.in_assignment = self.chain_assignment.pop()
paul@124 645
        self.in_invocation = self.chain_invocation.pop()
paul@110 646
paul@0 647
    def have_access_expression(self, node):
paul@0 648
paul@0 649
        "Return whether the expression associated with 'node' is Getattr."
paul@0 650
paul@0 651
        return isinstance(node.expr, compiler.ast.Getattr)
paul@0 652
paul@0 653
    def get_name_for_tracking(self, name, path=None):
paul@0 654
paul@0 655
        """
paul@0 656
        Return the name to be used for attribute usage observations involving
paul@0 657
        the given 'name' in the current namespace. If 'path' is indicated and
paul@0 658
        the name is being used outside a function, return the path value;
paul@0 659
        otherwise, return a path computed using the current namespace and the
paul@0 660
        given name.
paul@0 661
paul@0 662
        The intention of this method is to provide a suitably-qualified name
paul@0 663
        that can be tracked across namespaces. Where globals are being
paul@0 664
        referenced in class namespaces, they should be referenced using their
paul@0 665
        path within the module, not using a path within each class.
paul@0 666
paul@0 667
        It may not be possible to identify a global within a function at the
paul@0 668
        time of inspection (since a global may appear later in a file).
paul@0 669
        Consequently, globals are identified by their local name rather than
paul@0 670
        their module-qualified path.
paul@0 671
        """
paul@0 672
paul@0 673
        # For functions, use the appropriate local names.
paul@0 674
paul@0 675
        if self.in_function:
paul@0 676
            return name
paul@0 677
paul@0 678
        # For static namespaces, use the given qualified name.
paul@0 679
paul@0 680
        elif path:
paul@0 681
            return path
paul@0 682
paul@152 683
        # Otherwise, establish a name in the current namespace.
paul@0 684
paul@0 685
        else:
paul@0 686
            return self.get_object_path(name)
paul@0 687
paul@0 688
    def get_path_for_access(self):
paul@0 689
paul@0 690
        "Outside functions, register accesses at the module level."
paul@0 691
paul@0 692
        if not self.in_function:
paul@0 693
            return self.name
paul@0 694
        else:
paul@0 695
            return self.get_namespace_path()
paul@0 696
paul@0 697
    def get_module_name(self, node):
paul@0 698
paul@0 699
        """
paul@0 700
        Using the given From 'node' in this module, calculate any relative import
paul@0 701
        information, returning a tuple containing a module to import along with any
paul@0 702
        names to import based on the node's name information.
paul@0 703
paul@0 704
        Where the returned module is given as None, whole module imports should
paul@0 705
        be performed for the returned modules using the returned names.
paul@0 706
        """
paul@0 707
paul@0 708
        # Absolute import.
paul@0 709
paul@0 710
        if node.level == 0:
paul@0 711
            return node.modname, node.names
paul@0 712
paul@0 713
        # Relative to an ancestor of this module.
paul@0 714
paul@0 715
        else:
paul@0 716
            path = self.name.split(".")
paul@0 717
            level = node.level
paul@0 718
paul@0 719
            # Relative imports treat package roots as submodules.
paul@0 720
paul@0 721
            if split(self.filename)[-1] == "__init__.py":
paul@0 722
                level -= 1
paul@0 723
paul@0 724
            if level > len(path):
paul@0 725
                raise InspectError("Relative import %r involves too many levels up from module %r" % (
paul@0 726
                    ("%s%s" % ("." * node.level, node.modname or "")), self.name))
paul@0 727
paul@0 728
            basename = ".".join(path[:len(path)-level])
paul@0 729
paul@0 730
        # Name imports from a module.
paul@0 731
paul@0 732
        if node.modname:
paul@0 733
            return "%s.%s" % (basename, node.modname), node.names
paul@0 734
paul@0 735
        # Relative whole module imports.
paul@0 736
paul@0 737
        else:
paul@0 738
            return basename, node.names
paul@0 739
paul@0 740
def get_argnames(args):
paul@0 741
paul@0 742
    """
paul@0 743
    Return a list of all names provided by 'args'. Since tuples may be
paul@0 744
    employed, the arguments are traversed depth-first.
paul@0 745
    """
paul@0 746
paul@0 747
    l = []
paul@0 748
    for arg in args:
paul@0 749
        if isinstance(arg, tuple):
paul@0 750
            l += get_argnames(arg)
paul@0 751
        else:
paul@0 752
            l.append(arg)
paul@0 753
    return l
paul@0 754
paul@0 755
# Dictionary utilities.
paul@0 756
paul@0 757
def init_item(d, key, fn):
paul@0 758
paul@0 759
    """
paul@0 760
    Add to 'd' an entry for 'key' using the callable 'fn' to make an initial
paul@0 761
    value where no entry already exists.
paul@0 762
    """
paul@0 763
paul@0 764
    if not d.has_key(key):
paul@0 765
        d[key] = fn()
paul@0 766
    return d[key]
paul@0 767
paul@0 768
def dict_for_keys(d, keys):
paul@0 769
paul@0 770
    "Return a new dictionary containing entries from 'd' for the given 'keys'."
paul@0 771
paul@0 772
    nd = {}
paul@0 773
    for key in keys:
paul@0 774
        if d.has_key(key):
paul@0 775
            nd[key] = d[key]
paul@0 776
    return nd
paul@0 777
paul@0 778
def make_key(s):
paul@0 779
paul@0 780
    "Make sequence 's' into a tuple-based key, first sorting its contents."
paul@0 781
paul@0 782
    l = list(s)
paul@0 783
    l.sort()
paul@0 784
    return tuple(l)
paul@0 785
paul@0 786
def add_counter_item(d, key):
paul@0 787
paul@0 788
    """
paul@0 789
    Make a mapping in 'd' for 'key' to the number of keys added before it, thus
paul@0 790
    maintaining a mapping of keys to their order of insertion.
paul@0 791
    """
paul@0 792
paul@0 793
    if not d.has_key(key):
paul@0 794
        d[key] = len(d.keys())
paul@0 795
    return d[key] 
paul@0 796
paul@0 797
def remove_items(d1, d2):
paul@0 798
paul@0 799
    "Remove from 'd1' all items from 'd2'."
paul@0 800
paul@0 801
    for key in d2.keys():
paul@0 802
        if d1.has_key(key):
paul@0 803
            del d1[key]
paul@0 804
paul@0 805
# Set utilities.
paul@0 806
paul@0 807
def first(s):
paul@0 808
    return list(s)[0]
paul@0 809
paul@0 810
def same(s1, s2):
paul@0 811
    return set(s1) == set(s2)
paul@0 812
paul@0 813
# General input/output.
paul@0 814
paul@0 815
def readfile(filename):
paul@0 816
paul@0 817
    "Return the contents of 'filename'."
paul@0 818
paul@0 819
    f = open(filename)
paul@0 820
    try:
paul@0 821
        return f.read()
paul@0 822
    finally:
paul@0 823
        f.close()
paul@0 824
paul@0 825
def writefile(filename, s):
paul@0 826
paul@0 827
    "Write to 'filename' the string 's'."
paul@0 828
paul@0 829
    f = open(filename, "w")
paul@0 830
    try:
paul@0 831
        f.write(s)
paul@0 832
    finally:
paul@0 833
        f.close()
paul@0 834
paul@0 835
# General encoding.
paul@0 836
paul@0 837
def sorted_output(x):
paul@0 838
paul@0 839
    "Sort sequence 'x' and return a string with commas separating the values."
paul@0 840
paul@0 841
    x = map(str, x)
paul@0 842
    x.sort()
paul@0 843
    return ", ".join(x)
paul@0 844
paul@0 845
# Attribute chain decoding.
paul@0 846
paul@0 847
def get_attrnames(attrnames):
paul@11 848
paul@11 849
    """
paul@11 850
    Split the qualified attribute chain 'attrnames' into its components,
paul@11 851
    handling special attributes starting with "#" that indicate type
paul@11 852
    conformance.
paul@11 853
    """
paul@11 854
paul@0 855
    if attrnames.startswith("#"):
paul@0 856
        return [attrnames]
paul@0 857
    else:
paul@0 858
        return attrnames.split(".")
paul@0 859
paul@0 860
def get_attrname_from_location(location):
paul@11 861
paul@11 862
    """
paul@11 863
    Extract the first attribute from the attribute names employed in a
paul@11 864
    'location'.
paul@11 865
    """
paul@11 866
paul@0 867
    path, name, attrnames, access = location
paul@91 868
    if not attrnames:
paul@91 869
        return attrnames
paul@0 870
    return get_attrnames(attrnames)[0]
paul@0 871
paul@85 872
def get_name_path(path, name):
paul@85 873
paul@85 874
    "Return a suitable qualified name from the given 'path' and 'name'."
paul@85 875
paul@85 876
    if "." in name:
paul@85 877
        return name
paul@85 878
    else:
paul@85 879
        return "%s.%s" % (path, name)
paul@85 880
paul@90 881
# Usage-related functions.
paul@89 882
paul@89 883
def get_types_for_usage(attrnames, objects):
paul@89 884
paul@89 885
    """
paul@89 886
    Identify the types that can support the given 'attrnames', using the
paul@89 887
    given 'objects' as the catalogue of type details.
paul@89 888
    """
paul@89 889
paul@89 890
    types = []
paul@89 891
    for name, _attrnames in objects.items():
paul@89 892
        if set(attrnames).issubset(_attrnames):
paul@89 893
            types.append(name)
paul@89 894
    return types
paul@89 895
paul@90 896
def get_invoked_attributes(usage):
paul@90 897
paul@90 898
    "Obtain invoked attribute from the given 'usage'."
paul@90 899
paul@90 900
    invoked = []
paul@90 901
    if usage:
paul@107 902
        for attrname, invocation, assignment in usage:
paul@90 903
            if invocation:
paul@90 904
                invoked.append(attrname)
paul@90 905
    return invoked
paul@90 906
paul@107 907
def get_assigned_attributes(usage):
paul@107 908
paul@107 909
    "Obtain assigned attribute from the given 'usage'."
paul@107 910
paul@107 911
    assigned = []
paul@107 912
    if usage:
paul@107 913
        for attrname, invocation, assignment in usage:
paul@107 914
            if assignment:
paul@107 915
                assigned.append(attrname)
paul@107 916
    return assigned
paul@107 917
paul@0 918
# Useful data.
paul@0 919
paul@11 920
predefined_constants = "False", "None", "NotImplemented", "True"
paul@0 921
paul@0 922
operator_functions = {
paul@0 923
paul@0 924
    # Fundamental operations.
paul@0 925
paul@0 926
    "is" : "is_",
paul@0 927
    "is not" : "is_not",
paul@0 928
paul@0 929
    # Binary operations.
paul@0 930
paul@0 931
    "in" : "in_",
paul@0 932
    "not in" : "not_in",
paul@0 933
    "Add" : "add",
paul@0 934
    "Bitand" : "and_",
paul@0 935
    "Bitor" : "or_",
paul@0 936
    "Bitxor" : "xor",
paul@0 937
    "Div" : "div",
paul@0 938
    "FloorDiv" : "floordiv",
paul@0 939
    "LeftShift" : "lshift",
paul@0 940
    "Mod" : "mod",
paul@0 941
    "Mul" : "mul",
paul@0 942
    "Power" : "pow",
paul@0 943
    "RightShift" : "rshift",
paul@0 944
    "Sub" : "sub",
paul@0 945
paul@0 946
    # Unary operations.
paul@0 947
paul@0 948
    "Invert" : "invert",
paul@0 949
    "UnaryAdd" : "pos",
paul@0 950
    "UnarySub" : "neg",
paul@0 951
paul@0 952
    # Augmented assignment.
paul@0 953
paul@0 954
    "+=" : "iadd",
paul@0 955
    "-=" : "isub",
paul@0 956
    "*=" : "imul",
paul@0 957
    "/=" : "idiv",
paul@0 958
    "//=" : "ifloordiv",
paul@0 959
    "%=" : "imod",
paul@0 960
    "**=" : "ipow",
paul@0 961
    "<<=" : "ilshift",
paul@0 962
    ">>=" : "irshift",
paul@0 963
    "&=" : "iand",
paul@0 964
    "^=" : "ixor",
paul@0 965
    "|=" : "ior",
paul@0 966
paul@0 967
    # Comparisons.
paul@0 968
paul@0 969
    "==" : "eq",
paul@0 970
    "!=" : "ne",
paul@0 971
    "<" : "lt",
paul@0 972
    "<=" : "le",
paul@0 973
    ">=" : "ge",
paul@0 974
    ">" : "gt",
paul@0 975
    }
paul@0 976
paul@0 977
# vim: tabstop=4 expandtab shiftwidth=4