# HG changeset patch # User Paul Boddie # Date 1339458010 -7200 # Node ID e7eab0edc22594eb85e8f3b6791c67e99e40248a # Parent b939a34d5b5c2a8f03412b7070d6f7fda9ea26c8 Added the Python standard library threading module. diff -r b939a34d5b5c -r e7eab0edc225 docs/COPYING.txt --- a/docs/COPYING.txt Mon Jun 11 00:40:42 2012 +0200 +++ b/docs/COPYING.txt Tue Jun 12 01:40:10 2012 +0200 @@ -15,3 +15,30 @@ You should have received a copy of the GNU General Public License along with this program. If not, see . + +Additional Notices +------------------ + +The following additional copyright notices (taken from the Python +distribution's LICENSE file) apply to modules originating from the Python +standard library: + +Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 +Python Software Foundation. All rights reserved. + +Copyright (c) 2000 BeOpen.com. +All rights reserved. + +Copyright (c) 1995-2001 Corporation for National Research Initiatives. +All rights reserved. + +Copyright (c) 1991-1995 Stichting Mathematisch Centrum. +All rights reserved. + +See LICENCE-python.txt for the original licensing conditions applying +specifically to modules originating from the Python standard library. + +Note that these modules have been modified and are made available under the +terms of the GNU General Public License as stated above. The inclusion of +these additional notices and conditions is done merely to satisfy the request +in those conditions that certain notices be preserved in derived works. diff -r b939a34d5b5c -r e7eab0edc225 docs/LICENCE-python.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/docs/LICENCE-python.txt Tue Jun 12 01:40:10 2012 +0200 @@ -0,0 +1,193 @@ +PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2 +-------------------------------------------- + +1. This LICENSE AGREEMENT is between the Python Software Foundation +("PSF"), and the Individual or Organization ("Licensee") accessing and +otherwise using this software ("Python") in source or binary form and +its associated documentation. + +2. Subject to the terms and conditions of this License Agreement, PSF +hereby grants Licensee a nonexclusive, royalty-free, world-wide +license to reproduce, analyze, test, perform and/or display publicly, +prepare derivative works, distribute, and otherwise use Python +alone or in any derivative version, provided, however, that PSF's +License Agreement and PSF's notice of copyright, i.e., "Copyright (c) +2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Python Software Foundation; +All Rights Reserved" are retained in Python alone or in any derivative +version prepared by Licensee. + +3. In the event Licensee prepares a derivative work that is based on +or incorporates Python or any part thereof, and wants to make +the derivative work available to others as provided herein, then +Licensee hereby agrees to include in any such work a brief summary of +the changes made to Python. + +4. PSF is making Python available to Licensee on an "AS IS" +basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR +IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND +DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS +FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT +INFRINGE ANY THIRD PARTY RIGHTS. + +5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON +FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS +A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, +OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. + +6. This License Agreement will automatically terminate upon a material +breach of its terms and conditions. + +7. Nothing in this License Agreement shall be deemed to create any +relationship of agency, partnership, or joint venture between PSF and +Licensee. This License Agreement does not grant permission to use PSF +trademarks or trade name in a trademark sense to endorse or promote +products or services of Licensee, or any third party. + +8. By copying, installing or otherwise using Python, Licensee +agrees to be bound by the terms and conditions of this License +Agreement. + + +BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 +------------------------------------------- + +BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1 + +1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an +office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the +Individual or Organization ("Licensee") accessing and otherwise using +this software in source or binary form and its associated +documentation ("the Software"). + +2. Subject to the terms and conditions of this BeOpen Python License +Agreement, BeOpen hereby grants Licensee a non-exclusive, +royalty-free, world-wide license to reproduce, analyze, test, perform +and/or display publicly, prepare derivative works, distribute, and +otherwise use the Software alone or in any derivative version, +provided, however, that the BeOpen Python License is retained in the +Software, alone or in any derivative version prepared by Licensee. + +3. BeOpen is making the Software available to Licensee on an "AS IS" +basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR +IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND +DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS +FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT +INFRINGE ANY THIRD PARTY RIGHTS. + +4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE +SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS +AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY +DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. + +5. This License Agreement will automatically terminate upon a material +breach of its terms and conditions. + +6. This License Agreement shall be governed by and interpreted in all +respects by the law of the State of California, excluding conflict of +law provisions. Nothing in this License Agreement shall be deemed to +create any relationship of agency, partnership, or joint venture +between BeOpen and Licensee. This License Agreement does not grant +permission to use BeOpen trademarks or trade names in a trademark +sense to endorse or promote products or services of Licensee, or any +third party. As an exception, the "BeOpen Python" logos available at +http://www.pythonlabs.com/logos.html may be used according to the +permissions granted on that web page. + +7. By copying, installing or otherwise using the software, Licensee +agrees to be bound by the terms and conditions of this License +Agreement. + + +CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1 +--------------------------------------- + +1. This LICENSE AGREEMENT is between the Corporation for National +Research Initiatives, having an office at 1895 Preston White Drive, +Reston, VA 20191 ("CNRI"), and the Individual or Organization +("Licensee") accessing and otherwise using Python 1.6.1 software in +source or binary form and its associated documentation. + +2. Subject to the terms and conditions of this License Agreement, CNRI +hereby grants Licensee a nonexclusive, royalty-free, world-wide +license to reproduce, analyze, test, perform and/or display publicly, +prepare derivative works, distribute, and otherwise use Python 1.6.1 +alone or in any derivative version, provided, however, that CNRI's +License Agreement and CNRI's notice of copyright, i.e., "Copyright (c) +1995-2001 Corporation for National Research Initiatives; All Rights +Reserved" are retained in Python 1.6.1 alone or in any derivative +version prepared by Licensee. Alternately, in lieu of CNRI's License +Agreement, Licensee may substitute the following text (omitting the +quotes): "Python 1.6.1 is made available subject to the terms and +conditions in CNRI's License Agreement. This Agreement together with +Python 1.6.1 may be located on the Internet using the following +unique, persistent identifier (known as a handle): 1895.22/1013. This +Agreement may also be obtained from a proxy server on the Internet +using the following URL: http://hdl.handle.net/1895.22/1013". + +3. In the event Licensee prepares a derivative work that is based on +or incorporates Python 1.6.1 or any part thereof, and wants to make +the derivative work available to others as provided herein, then +Licensee hereby agrees to include in any such work a brief summary of +the changes made to Python 1.6.1. + +4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" +basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR +IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND +DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS +FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT +INFRINGE ANY THIRD PARTY RIGHTS. + +5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON +1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS +A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, +OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. + +6. This License Agreement will automatically terminate upon a material +breach of its terms and conditions. + +7. This License Agreement shall be governed by the federal +intellectual property law of the United States, including without +limitation the federal copyright law, and, to the extent such +U.S. federal law does not apply, by the law of the Commonwealth of +Virginia, excluding Virginia's conflict of law provisions. +Notwithstanding the foregoing, with regard to derivative works based +on Python 1.6.1 that incorporate non-separable material that was +previously distributed under the GNU General Public License (GPL), the +law of the Commonwealth of Virginia shall govern this License +Agreement only as to issues arising under or with respect to +Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this +License Agreement shall be deemed to create any relationship of +agency, partnership, or joint venture between CNRI and Licensee. This +License Agreement does not grant permission to use CNRI trademarks or +trade name in a trademark sense to endorse or promote products or +services of Licensee, or any third party. + +8. By clicking on the "ACCEPT" button where indicated, or by copying, +installing or otherwise using Python 1.6.1, Licensee agrees to be +bound by the terms and conditions of this License Agreement. + + ACCEPT + + +CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 +-------------------------------------------------- + +Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, +The Netherlands. All rights reserved. + +Permission to use, copy, modify, and distribute this software and its +documentation for any purpose and without fee is hereby granted, +provided that the above copyright notice appear in all copies and that +both that copyright notice and this permission notice appear in +supporting documentation, and that the name of Stichting Mathematisch +Centrum or CWI not be used in advertising or publicity pertaining to +distribution of the software without specific, written prior +permission. + +STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO +THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND +FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE +FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT +OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. diff -r b939a34d5b5c -r e7eab0edc225 lib/threading.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lib/threading.py Tue Jun 12 01:40:10 2012 +0200 @@ -0,0 +1,825 @@ +#!/usr/bin/env python + +""" +Thread module emulating a subset of Java's threading model. + +See docs/COPYING.txt and docs/LICENCE-python.txt for copyright and licensing +information for Python standard library modules. +""" + +import sys as _sys + +try: + import thread +except ImportError: + del _sys.modules[__name__] + raise + +from time import time as _time, sleep as _sleep +from traceback import format_exc as _format_exc +from collections import deque + +# Rename some stuff so "from threading import *" is safe +__all__ = ['activeCount', 'Condition', 'currentThread', 'enumerate', 'Event', + 'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread', + 'Timer', 'setprofile', 'settrace', 'local', 'stack_size'] + +_start_new_thread = thread.start_new_thread +_allocate_lock = thread.allocate_lock +_get_ident = thread.get_ident +ThreadError = thread.error +del thread + + +# Support for profile and trace hooks + +_profile_hook = None +_trace_hook = None + +def setprofile(func): + global _profile_hook + _profile_hook = func + +def settrace(func): + global _trace_hook + _trace_hook = func + +# Synchronization classes + +Lock = _allocate_lock + +def RLock(*args, **kwargs): + return _RLock(*args, **kwargs) + +class _RLock: + + def __init__(self): + self.__block = _allocate_lock() + self.__owner = None + self.__count = 0 + + def __repr__(self): + owner = self.__owner + return "<%s(%s, %d)>" % ( + self.__class__.__name__, + owner and owner.getName(), + self.__count) + + def acquire(self, blocking=1): + me = currentThread() + if self.__owner is me: + self.__count = self.__count + 1 + if __debug__: + self._note("%s.acquire(%s): recursive success", self, blocking) + return 1 + rc = self.__block.acquire(blocking) + if rc: + self.__owner = me + self.__count = 1 + if __debug__: + self._note("%s.acquire(%s): initial success", self, blocking) + else: + if __debug__: + self._note("%s.acquire(%s): failure", self, blocking) + return rc + + __enter__ = acquire + + def release(self): + if self.__owner is not currentThread(): + raise RuntimeError("cannot release un-aquired lock") + self.__count = count = self.__count - 1 + if not count: + self.__owner = None + self.__block.release() + if __debug__: + self._note("%s.release(): final release", self) + else: + if __debug__: + self._note("%s.release(): non-final release", self) + + def __exit__(self, t, v, tb): + self.release() + + # Internal methods used by condition variables + + def _acquire_restore(self, (count, owner)): + self.__block.acquire() + self.__count = count + self.__owner = owner + if __debug__: + self._note("%s._acquire_restore()", self) + + def _release_save(self): + if __debug__: + self._note("%s._release_save()", self) + count = self.__count + self.__count = 0 + owner = self.__owner + self.__owner = None + self.__block.release() + return (count, owner) + + def _is_owned(self): + return self.__owner is currentThread() + + +def Condition(*args, **kwargs): + return _Condition(*args, **kwargs) + +class _Condition: + + def __init__(self, lock=None): + if lock is None: + lock = RLock() + self.__lock = lock + # Export the lock's acquire() and release() methods + self.acquire = lock.acquire + self.release = lock.release + # If the lock defines _release_save() and/or _acquire_restore(), + # these override the default implementations (which just call + # release() and acquire() on the lock). Ditto for _is_owned(). + try: + self._release_save = lock._release_save + except AttributeError: + pass + try: + self._acquire_restore = lock._acquire_restore + except AttributeError: + pass + try: + self._is_owned = lock._is_owned + except AttributeError: + pass + self.__waiters = [] + + def __enter__(self): + return self.__lock.__enter__() + + def __exit__(self, *args): + return self.__lock.__exit__(*args) + + def __repr__(self): + return "" % (self.__lock, len(self.__waiters)) + + def _release_save(self): + self.__lock.release() # No state to save + + def _acquire_restore(self, x): + self.__lock.acquire() # Ignore saved state + + def _is_owned(self): + # Return True if lock is owned by currentThread. + # This method is called only if __lock doesn't have _is_owned(). + if self.__lock.acquire(0): + self.__lock.release() + return False + else: + return True + + def wait(self, timeout=None): + if not self._is_owned(): + raise RuntimeError("cannot wait on un-aquired lock") + waiter = _allocate_lock() + waiter.acquire() + self.__waiters.append(waiter) + saved_state = self._release_save() + try: # restore state no matter what (e.g., KeyboardInterrupt) + if timeout is None: + waiter.acquire() + if __debug__: + self._note("%s.wait(): got it", self) + else: + # Balancing act: We can't afford a pure busy loop, so we + # have to sleep; but if we sleep the whole timeout time, + # we'll be unresponsive. The scheme here sleeps very + # little at first, longer as time goes on, but never longer + # than 20 times per second (or the timeout time remaining). + endtime = _time() + timeout + delay = 0.0005 # 500 us -> initial delay of 1 ms + while True: + gotit = waiter.acquire(0) + if gotit: + break + remaining = endtime - _time() + if remaining <= 0: + break + delay = min(delay * 2, remaining, .05) + _sleep(delay) + if not gotit: + if __debug__: + self._note("%s.wait(%s): timed out", self, timeout) + try: + self.__waiters.remove(waiter) + except ValueError: + pass + else: + if __debug__: + self._note("%s.wait(%s): got it", self, timeout) + finally: + self._acquire_restore(saved_state) + + def notify(self, n=1): + if not self._is_owned(): + raise RuntimeError("cannot notify on un-aquired lock") + __waiters = self.__waiters + waiters = __waiters[:n] + if not waiters: + if __debug__: + self._note("%s.notify(): no waiters", self) + return + self._note("%s.notify(): notifying %d waiter%s", self, n, + n!=1 and "s" or "") + for waiter in waiters: + waiter.release() + try: + __waiters.remove(waiter) + except ValueError: + pass + + def notifyAll(self): + self.notify(len(self.__waiters)) + + +def Semaphore(*args, **kwargs): + return _Semaphore(*args, **kwargs) + +class _Semaphore: + + # After Tim Peters' semaphore class, but not quite the same (no maximum) + + def __init__(self, value=1): + if value < 0: + raise ValueError("semaphore initial value must be >= 0") + self.__cond = Condition(Lock()) + self.__value = value + + def acquire(self, blocking=1): + rc = False + self.__cond.acquire() + while self.__value == 0: + if not blocking: + break + if __debug__: + self._note("%s.acquire(%s): blocked waiting, value=%s", + self, blocking, self.__value) + self.__cond.wait() + else: + self.__value = self.__value - 1 + if __debug__: + self._note("%s.acquire: success, value=%s", + self, self.__value) + rc = True + self.__cond.release() + return rc + + __enter__ = acquire + + def release(self): + self.__cond.acquire() + self.__value = self.__value + 1 + if __debug__: + self._note("%s.release: success, value=%s", + self, self.__value) + self.__cond.notify() + self.__cond.release() + + def __exit__(self, t, v, tb): + self.release() + + +def BoundedSemaphore(*args, **kwargs): + return _BoundedSemaphore(*args, **kwargs) + +class _BoundedSemaphore(_Semaphore): + """Semaphore that checks that # releases is <= # acquires""" + def __init__(self, value=1): + _Semaphore.__init__(self, value) + self._initial_value = value + + def release(self): + if self._Semaphore__value >= self._initial_value: + raise ValueError, "Semaphore released too many times" + return _Semaphore.release(self) + + +def Event(*args, **kwargs): + return _Event(*args, **kwargs) + +class _Event: + + # After Tim Peters' event class (without is_posted()) + + def __init__(self): + self.__cond = Condition(Lock()) + self.__flag = False + + def isSet(self): + return self.__flag + + def set(self): + self.__cond.acquire() + try: + self.__flag = True + self.__cond.notifyAll() + finally: + self.__cond.release() + + def clear(self): + self.__cond.acquire() + try: + self.__flag = False + finally: + self.__cond.release() + + def wait(self, timeout=None): + self.__cond.acquire() + try: + if not self.__flag: + self.__cond.wait(timeout) + finally: + self.__cond.release() + +# Helper to generate new thread names +_counter = 0 +def _newname(template="Thread-%d"): + global _counter + _counter = _counter + 1 + return template % _counter + +# Active thread administration +_active_limbo_lock = _allocate_lock() +_active = {} # maps thread id to Thread object +_limbo = {} + + +# Main class for threads + +class Thread: + + __initialized = False + # Need to store a reference to sys.exc_info for printing + # out exceptions when a thread tries to use a global var. during interp. + # shutdown and thus raises an exception about trying to perform some + # operation on/with a NoneType + __exc_info = _sys.exc_info + + def __init__(self, group=None, target=None, name=None, + args=(), kwargs=None): + assert group is None, "group argument must be None for now" + if kwargs is None: + kwargs = {} + self.__target = target + self.__name = str(name or _newname()) + self.__args = args + self.__kwargs = kwargs + self.__daemonic = self._set_daemon() + self.__started = False + self.__stopped = False + self.__block = Condition(Lock()) + self.__initialized = True + # sys.stderr is not stored in the class like + # sys.exc_info since it can be changed between instances + self.__stderr = _sys.stderr + + def _set_daemon(self): + # Overridden in _MainThread and _DummyThread + return currentThread().isDaemon() + + def __repr__(self): + assert self.__initialized, "Thread.__init__() was not called" + status = "initial" + if self.__started: + status = "started" + if self.__stopped: + status = "stopped" + if self.__daemonic: + status = status + " daemon" + return "<%s(%s, %s)>" % (self.__class__.__name__, self.__name, status) + + def start(self): + if not self.__initialized: + raise RuntimeError("thread.__init__() not called") + if self.__started: + raise RuntimeError("thread already started") + if __debug__: + self._note("%s.start(): starting thread", self) + _active_limbo_lock.acquire() + _limbo[self] = self + _active_limbo_lock.release() + _start_new_thread(self.__bootstrap, ()) + self.__started = True + _sleep(0.000001) # 1 usec, to let the thread run (Solaris hack) + + def run(self): + if self.__target: + self.__target(*self.__args, **self.__kwargs) + + def __bootstrap(self): + # Wrapper around the real bootstrap code that ignores + # exceptions during interpreter cleanup. Those typically + # happen when a daemon thread wakes up at an unfortunate + # moment, finds the world around it destroyed, and raises some + # random exception *** while trying to report the exception in + # __bootstrap_inner() below ***. Those random exceptions + # don't help anybody, and they confuse users, so we suppress + # them. We suppress them only when it appears that the world + # indeed has already been destroyed, so that exceptions in + # __bootstrap_inner() during normal business hours are properly + # reported. Also, we only suppress them for daemonic threads; + # if a non-daemonic encounters this, something else is wrong. + try: + self.__bootstrap_inner() + except: + if self.__daemonic and _sys is None: + return + raise + + def __bootstrap_inner(self): + try: + self.__started = True + _active_limbo_lock.acquire() + _active[_get_ident()] = self + del _limbo[self] + _active_limbo_lock.release() + if __debug__: + self._note("%s.__bootstrap(): thread started", self) + + if _trace_hook: + self._note("%s.__bootstrap(): registering trace hook", self) + _sys.settrace(_trace_hook) + if _profile_hook: + self._note("%s.__bootstrap(): registering profile hook", self) + _sys.setprofile(_profile_hook) + + try: + self.run() + except SystemExit: + if __debug__: + self._note("%s.__bootstrap(): raised SystemExit", self) + except: + if __debug__: + self._note("%s.__bootstrap(): unhandled exception", self) + # If sys.stderr is no more (most likely from interpreter + # shutdown) use self.__stderr. Otherwise still use sys (as in + # _sys) in case sys.stderr was redefined since the creation of + # self. + if _sys: + _sys.stderr.write("Exception in thread %s:\n%s\n" % + (self.getName(), _format_exc())) + else: + # Do the best job possible w/o a huge amt. of code to + # approximate a traceback (code ideas from + # Lib/traceback.py) + exc_type, exc_value, exc_tb = self.__exc_info() + try: + print>>self.__stderr, ( + "Exception in thread " + self.getName() + + " (most likely raised during interpreter shutdown):") + print>>self.__stderr, ( + "Traceback (most recent call last):") + while exc_tb: + print>>self.__stderr, ( + ' File "%s", line %s, in %s' % + (exc_tb.tb_frame.f_code.co_filename, + exc_tb.tb_lineno, + exc_tb.tb_frame.f_code.co_name)) + exc_tb = exc_tb.tb_next + print>>self.__stderr, ("%s: %s" % (exc_type, exc_value)) + # Make sure that exc_tb gets deleted since it is a memory + # hog; deleting everything else is just for thoroughness + finally: + del exc_type, exc_value, exc_tb + else: + if __debug__: + self._note("%s.__bootstrap(): normal return", self) + finally: + _active_limbo_lock.acquire() + try: + self.__stop() + try: + # We don't call self.__delete() because it also + # grabs _active_limbo_lock. + del _active[_get_ident()] + except: + pass + finally: + _active_limbo_lock.release() + + def __stop(self): + self.__block.acquire() + self.__stopped = True + self.__block.notifyAll() + self.__block.release() + + def __delete(self): + "Remove current thread from the dict of currently running threads." + + # Notes about running with dummy_thread: + # + # Must take care to not raise an exception if dummy_thread is being + # used (and thus this module is being used as an instance of + # dummy_threading). dummy_thread.get_ident() always returns -1 since + # there is only one thread if dummy_thread is being used. Thus + # len(_active) is always <= 1 here, and any Thread instance created + # overwrites the (if any) thread currently registered in _active. + # + # An instance of _MainThread is always created by 'threading'. This + # gets overwritten the instant an instance of Thread is created; both + # threads return -1 from dummy_thread.get_ident() and thus have the + # same key in the dict. So when the _MainThread instance created by + # 'threading' tries to clean itself up when atexit calls this method + # it gets a KeyError if another Thread instance was created. + # + # This all means that KeyError from trying to delete something from + # _active if dummy_threading is being used is a red herring. But + # since it isn't if dummy_threading is *not* being used then don't + # hide the exception. + + _active_limbo_lock.acquire() + try: + try: + del _active[_get_ident()] + except KeyError: + if 'dummy_threading' not in _sys.modules: + raise + finally: + _active_limbo_lock.release() + + def join(self, timeout=None): + if not self.__initialized: + raise RuntimeError("Thread.__init__() not called") + if not self.__started: + raise RuntimeError("cannot join thread before it is started") + if self is currentThread(): + raise RuntimeError("cannot join current thread") + + if __debug__: + if not self.__stopped: + self._note("%s.join(): waiting until thread stops", self) + self.__block.acquire() + try: + if timeout is None: + while not self.__stopped: + self.__block.wait() + if __debug__: + self._note("%s.join(): thread stopped", self) + else: + deadline = _time() + timeout + while not self.__stopped: + delay = deadline - _time() + if delay <= 0: + if __debug__: + self._note("%s.join(): timed out", self) + break + self.__block.wait(delay) + else: + if __debug__: + self._note("%s.join(): thread stopped", self) + finally: + self.__block.release() + + def getName(self): + assert self.__initialized, "Thread.__init__() not called" + return self.__name + + def setName(self, name): + assert self.__initialized, "Thread.__init__() not called" + self.__name = str(name) + + def isAlive(self): + assert self.__initialized, "Thread.__init__() not called" + return self.__started and not self.__stopped + + def isDaemon(self): + assert self.__initialized, "Thread.__init__() not called" + return self.__daemonic + + def setDaemon(self, daemonic): + if not self.__initialized: + raise RuntimeError("Thread.__init__() not called") + if self.__started: + raise RuntimeError("cannot set daemon status of active thread"); + self.__daemonic = daemonic + +# The timer class was contributed by Itamar Shtull-Trauring + +def Timer(*args, **kwargs): + return _Timer(*args, **kwargs) + +class _Timer(Thread): + """Call a function after a specified number of seconds: + + t = Timer(30.0, f, args=[], kwargs={}) + t.start() + t.cancel() # stop the timer's action if it's still waiting + """ + + def __init__(self, interval, function, args=[], kwargs={}): + Thread.__init__(self) + self.interval = interval + self.function = function + self.args = args + self.kwargs = kwargs + self.finished = Event() + + def cancel(self): + """Stop the timer if it hasn't finished yet""" + self.finished.set() + + def run(self): + self.finished.wait(self.interval) + if not self.finished.isSet(): + self.function(*self.args, **self.kwargs) + self.finished.set() + +# Special thread class to represent the main thread +# This is garbage collected through an exit handler + +class _MainThread(Thread): + + def __init__(self): + Thread.__init__(self, name="MainThread") + self._Thread__started = True + _active_limbo_lock.acquire() + _active[_get_ident()] = self + _active_limbo_lock.release() + + def _set_daemon(self): + return False + + def _exitfunc(self): + self._Thread__stop() + t = _pickSomeNonDaemonThread() + if t: + if __debug__: + self._note("%s: waiting for other threads", self) + while t: + t.join() + t = _pickSomeNonDaemonThread() + if __debug__: + self._note("%s: exiting", self) + self._Thread__delete() + +def _pickSomeNonDaemonThread(): + for t in enumerate(): + if not t.isDaemon() and t.isAlive(): + return t + return None + + +# Dummy thread class to represent threads not started here. +# These aren't garbage collected when they die, nor can they be waited for. +# If they invoke anything in threading.py that calls currentThread(), they +# leave an entry in the _active dict forever after. +# Their purpose is to return *something* from currentThread(). +# They are marked as daemon threads so we won't wait for them +# when we exit (conform previous semantics). + +class _DummyThread(Thread): + + def __init__(self): + Thread.__init__(self, name=_newname("Dummy-%d")) + + # Thread.__block consumes an OS-level locking primitive, which + # can never be used by a _DummyThread. Since a _DummyThread + # instance is immortal, that's bad, so release this resource. + del self._Thread__block + + self._Thread__started = True + _active_limbo_lock.acquire() + _active[_get_ident()] = self + _active_limbo_lock.release() + + def _set_daemon(self): + return True + + def join(self, timeout=None): + assert False, "cannot join a dummy thread" + + +# Global API functions + +def currentThread(): + try: + return _active[_get_ident()] + except KeyError: + ##print "currentThread(): no current thread for", _get_ident() + return _DummyThread() + +def activeCount(): + _active_limbo_lock.acquire() + count = len(_active) + len(_limbo) + _active_limbo_lock.release() + return count + +def enumerate(): + _active_limbo_lock.acquire() + active = _active.values() + _limbo.values() + _active_limbo_lock.release() + return active + +from thread import stack_size + +# Create the main thread object, +# and make it available for the interpreter +# (Py_Main) as threading._shutdown. + +_shutdown = _MainThread()._exitfunc + +# get thread-local implementation, either from the thread +# module, or from the python fallback + +try: + from thread import _local as local +except ImportError: + from _threading_local import local + + +# Self-test code + +def _test(): + + class BoundedQueue: + + def __init__(self, limit): + self.mon = RLock() + self.rc = Condition(self.mon) + self.wc = Condition(self.mon) + self.limit = limit + self.queue = deque() + + def put(self, item): + self.mon.acquire() + while len(self.queue) >= self.limit: + self._note("put(%s): queue full", item) + self.wc.wait() + self.queue.append(item) + self._note("put(%s): appended, length now %d", + item, len(self.queue)) + self.rc.notify() + self.mon.release() + + def get(self): + self.mon.acquire() + while not self.queue: + self._note("get(): queue empty") + self.rc.wait() + item = self.queue.popleft() + self._note("get(): got %s, %d left", item, len(self.queue)) + self.wc.notify() + self.mon.release() + return item + + class ProducerThread(Thread): + + def __init__(self, queue, quota): + Thread.__init__(self, name="Producer") + self.queue = queue + self.quota = quota + + def run(self): + from random import random + counter = 0 + while counter < self.quota: + counter = counter + 1 + self.queue.put("%s.%d" % (self.getName(), counter)) + _sleep(random() * 0.00001) + + + class ConsumerThread(Thread): + + def __init__(self, queue, count): + Thread.__init__(self, name="Consumer") + self.queue = queue + self.count = count + + def run(self): + while self.count > 0: + item = self.queue.get() + print item + self.count = self.count - 1 + + NP = 3 + QL = 4 + NI = 5 + + Q = BoundedQueue(QL) + P = [] + for i in range(NP): + t = ProducerThread(Q, NI) + t.setName("Producer-%d" % (i+1)) + P.append(t) + C = ConsumerThread(Q, NI*NP) + for t in P: + t.start() + _sleep(0.000001) + C.start() + for t in P: + t.join() + C.join() + +if __name__ == '__main__': + _test() + +# vim: tabstop=4 expandtab shiftwidth=4